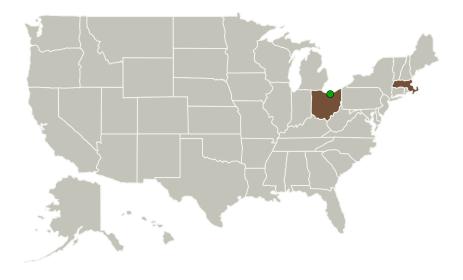
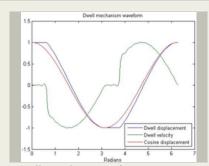
Small Business Innovation Research/Small Business Tech Transfer

Dwell Mechanism for Increasing Free-Piston Stirling Engine Specific Power and Efficiency, Phase I



Completed Technology Project (2015 - 2015)


Project Introduction

Proposed is a displacement dwell mechanism for increasing Stirling engine power output and efficiency. The dwell mechanism allows for deviations from a sinusoidal displacement profile found in crank-driven Stirling engines. Longer dwell allows slightly more time for heat transfer to occur in both the hot- and cold-side heat exchangers. Preliminary simulations using freely available Stirling engine simulation code by Israel Urieli indicates that even a modest increase in dwell time increases power output and efficiency. Increasing the power output and efficiency of a Stirling engine by way of a simple mechanical device represents the ?low hanging fruit? compared to complex and expensive regenerator/heat exchanger optimization and development.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Aerodyne Research,	Lead	Industry	Billerica,
Inc	Organization		Massachusetts
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Dwell Mechanism for Increasing Free-Piston Stirling Engine Specific Power and Efficiency, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1
•	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

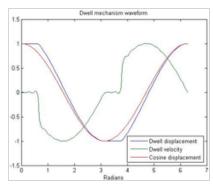
Dwell Mechanism for Increasing Free-Piston Stirling Engine Specific Power and Efficiency, Phase I

Completed Technology Project (2015 - 2015)

Primary U.S. Work Locations		
Massachusetts	Ohio	

Project Transitions

June 2015: Project Start


December 2015: Closed out

Closeout Summary: Dwell Mechanism for Increasing Free-Piston Stirling Engin e Specific Power and Efficiency, Phase I Project Image

Closeout Documentation:

• Final Summary Chart Image(https://techport.nasa.gov/file/138951)

Images

Briefing Chart Image

Dwell Mechanism for Increasing Free-Piston Stirling Engine Specific Power and Efficiency, Phase I (https://techport.nasa.gov/imag e/136607)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Aerodyne Research, Inc

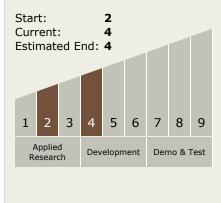
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Richard Jorgenson

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Dwell Mechanism for Increasing Free-Piston Stirling Engine Specific Power and Efficiency, Phase I

Completed Technology Project (2015 - 2015)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 TX03.1 Power Generation
 - and Energy Conversion

 ☐ TX03.1.2 Heat Sources

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

